

David Chappell

Understanding NoSQL on Microsoft Azure

Sponsored by Microsoft Corporation

Copyright © 2014 Chappell & Associates

 2

Contents

Data on Azure: The Big Picture .. 3

Relational Technology: A Quick Review .. 5

Azure NoSQL Technologies .. 6

Document Store: DocumentDB ..6

Key/Value Store: Tables ..9

Column Family Store: HBase ...10

Big Data Analytics: HDInsight ..13

Conclusion .. 15

About the Author .. 15

 3

Relational technology has been the dominant approach to working with data for decades. Typically accessed using

Structured Query Language (SQL), relational databases are incredibly useful. And as their popularity suggests, they

can be applied in many different situations.

.ǳǘ ǊŜƭŀǘƛƻƴŀƭ ǘŜŎƘƴƻƭƻƎȅ ƛǎƴΩǘ ŀƭǿŀȅǎ ǘƘŜ ōŜǎǘ ŀǇǇǊƻŀŎƘΦ {ǳǇǇƻǎŜ ȅƻǳ ƴŜŜŘ ǘƻ ǿƻǊƪ ǿƛǘƘ ǾŜǊȅ ƭŀǊƎŜ ŀƳƻǳƴǘǎ ƻŦ

data, for example, too much to store on a single machine. Scaling relational technology to work effectively across

many servers (physical or virtual) can be challengingΦ hǊ ǎǳǇǇƻǎŜ ȅƻǳǊ ŀǇǇƭƛŎŀǘƛƻƴ ǿƻǊƪǎ ǿƛǘƘ Řŀǘŀ ǘƘŀǘΩǎ ƴƻǘ ŀ

natural fit for relational systems, such as JavaScript Object Notation (JSON) documents. Shoehorning the data into

relational tables is possible, but a storage technology expressly designed to work with this kind of information

might be simpler.

NoSQL technologies have been created to address problems like these. As the name suggests, the label

ŜƴŎƻƳǇŀǎǎŜǎ ŀ ǾŀǊƛŜǘȅ ƻŦ ǎǘƻǊŀƎŜ ǘŜŎƘƴƻƭƻƎƛŜǎ ǘƘŀǘ ŘƻƴΩǘ ǳǎŜ the familiar relational model. Yet because they can

provide greater scalability, alternative data formats, and other advantages, NoSQL options can sometimes be the

right choice. wŜƭŀǘƛƻƴŀƭ ŘŀǘŀōŀǎŜǎ ƘŀǾŜ ŀ ƎƻƻŘ ŦǳǘǳǊŜΣ ŀƴŘ ǘƘŜȅΩǊŜ ǎǘƛƭƭ ǘƘŜ ōŜǎǘ ŎƘƻƛŎŜ ƛƴ many situations. But

NoSQL databases get more important every day.

Microsoft Azure supports a variety of NoSQL technologies. This guide walks through the options, explaining what

each one provides.

Data on Azure: The Big Picture

One way to think about data is to divide it into two broad categories:

 Operational Řŀǘŀ ǘƘŀǘΩǎ read and written by applications to carry out their ordinary functions. Examples

include shopping cart data in a web commerce application, information about employees in a human

resources system, and buy/sell prices in a stock-trading application.

 Analytical data ǘƘŀǘΩǎ ǳǎŜŘ ǘƻ ǇǊƻǾƛŘŜ ōǳǎƛƴŜǎǎ ƛƴǘŜƭƭƛƎŜƴŎŜ (BI). This data is often created by storing the

operational data used by applications over timeΣ ŀƴŘ ƛǘΩǎ ŎƻƳƳƻƴƭȅ ǊŜŀŘ-only. For example, an organization

might record all of the purchase data from its web commerce application or store all buy/sell prices for stock

trades, then analyze this data to learn about customer buying habits or market trends. Because these

analytical datasets provide a historical record, ǘƘŜȅΩǊŜ commonly much bigger than ŀƴ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ŎǳǊǊŜƴǘ

operational data.

Although the line between operational and analytical data can sometimes be blurry, different kinds of technologies

are commonly used to work with these two kinds of information. Those technologies can be either relationalτ

they use SQLτor non-relational. Figure 1 uses these two dimensions of operational/analytical and SQL/NoSQL to

categorize the data technologies that you can use on Azure today.

 4

Figure 1: Azure data technologies can be organized into four quadrants.

As the figure shows, Azure provides a group of managed services (shown in green) for working with relational and

non-relational data. It also lets you use other data technologies (shown in black italics) by running them in Azure

virtual machines (VMs).

The two quadrants in the bottom row of the table illustrate the SQL technologies that can be used on Azure. They

are:

 Relational databases, including the managed Azure service provided by SQL Database and the ability to run

other database systems, such as SQL Server, Oracle, and MySQL, in Azure VMs.

 Relational analytics, which can be done using SQL Server, Oracle, MySQL, or another relational database

system running in Azure VMs.

The two quadrants in the top row of Figure 1 illustrate the NoSQL technologies that can be used on Azure. As the

diagram shows, iǘΩǎ ŎƻƳƳƻƴ ǘƻ ƎǊƻǳǇ ǘƘŜǎŜ ǘŜŎhnologies into a few different categories. The options include the

following:

 Document stores, including the managed Azure service provided by DocumentDB. You can also run other

document stores in Azure VMs, such as MongoDB.

 Key/value stores, including the managed Azure service provided by Tables. You can also run other key/value

stores in Azure VMs, such as Riak.

 Column family stores, including a managed Azure service that implements HBase. You can also run other

column family stores in Azure VMs, such as Cassandra.

 Big data analytics, including the managed service provided by Azure HDInsight. This service implements

HadoopΣ ŀƴŘ ƛǘΩǎ ŀƭǎƻ ǇƻǎǎƛōƭŜ ǘƻ Ǌǳƴ Hadoop yourself in Azure VMs.

TƘƛǎ ƎǳƛŘŜ ŦƻŎǳǎŜǎ ƻƴ !ȊǳǊŜΩǎ four NoSQL managed services: DocumentDB, Tables, HBase, and HDInsight.

 5

Relational Technology: A Quick Review

.ŜŦƻǊŜ ŘƛǾƛƴƎ ƛƴǘƻ ǘƘŜ bƻ{v[ǿƻǊƭŘΣ ƛǘΩǎ ǿƻǊǘƘ ǎǘŀǊǘƛƴƎ ǿƛǘƘ ŀ ǉǳƛŎƪ ƭƻƻƪ ŀǘ relational technology. As just described,

Azure offers two options for working with relational data: using SQL Database or running a relational database

system in an Azure VM. While the two differ in important ways, they both use the same relational model for data.

Figure 2 shows a concrete example of this approach.

Figure 2: The relational model organizes data into tables, with columns defined by a schema.

A relational database stores data in tables. (More formally, a table is a relationΣ ǿƘƛŎƘ ƛǎ ǿƘŜǊŜ ǘƘŜ ǘŜŎƘƴƻƭƻƎȅΩǎ

name comes from.) A table contains some number of columns, each of a specific type, such as character, integer,

or date. A schema describes the columns each table can have, and every ǘŀōƭŜΩǎ Řŀǘŀ ƛǎ stored in one or more rows.

Each row contains a value for every column in that tableΣ ŀƴŘ ǘƘŜ Ǌƻǿǎ ŀǊŜƴΩǘ ƪŜǇǘ ƛƴ ŀƴȅ ǇŀǊǘƛŎǳƭŀǊ ƻǊŘŜǊ.

For example, suppose the table in Figure 2 is used to store data about the users of a web application. Each user has

a unique identifier along with a name, a country, an age, and the date this user last accessed the application. Each

row describes one user, and every row contains the same fields, one for each column in the table.

An application can issue a SQL query against one or more tables. The result is a relation containing values grouped

into rows. An application can also atomically update or add data in one or more tables using a transaction. When

changes are wrapped in a transaction, either all of them happen (if the transaction succeeds) or none of them

happen (if it fails). To write logic that runs inside the database system itself, a developer can create stored

procedures or triggers. In SQL Database, this logic is written in T-SQL, a language specifically designed for this

purpose.

One or more columns in each table are designated as the primary key. In Figure 2, for instance, the unique

identifier created for each user serves this purpose. The system automatically creates an index containing the

values in this column, which speeds up searching for data using that keyΦ LǘΩǎ ŀƭǎƻ ǇƻǎǎƛōƭŜ ǘƻ ŎǊŜŀǘŜ secondary

indexes on other columns in a table. These indexes speed up the execution of queries that access data using

column values other than the primary key. For example, if an application often needed to search for users by the

ŘŀǘŜ ƻŦ ǘƘŜƛǊ ƭŀǎǘ ǳǎŜΣ ŀ ǊŜƭŀǘƛƻƴŀƭ ŘŀǘŀōŀǎŜ ŎƻǳƭŘ ŎǊŜŀǘŜ ŀƴ ƛƴŘŜȄ ƻƴ ǘƘŜ ŜȄŀƳǇƭŜ ǘŀōƭŜΩǎ [ŀǎǘ¦ǎŜ ŎƻƭǳƳƴΦ

 6

The relational model is a beautiful thing. Schemas help avoid errors, since an attempt to write the wrong type of

data into a particular column can be blocked by the database system. Transactions free developers from worrying

about inconsistent data caused by failures during updates, even when the updates span more than one table.

Secondary indexes let applications access data efficiently using different keys, giving developers more flexibility. All

of these are good things.

But these benefits come at a cost. For example, iǘΩǎ hard to spread data across many serversτǎƻƳŜǘƘƛƴƎ ǘƘŀǘΩǎ

required at large scaleτand still provide all of these features. It can also sometimes be challenging for an

application developer to map the objects in her application to relational tables. And schemas can make it difficult

to deal with changing data. In situations like these, the people creating an application might instead choose to use

a NoSQL solution.

Azure NoSQL Technologies

{ŀȅƛƴƎ ǘƘŀǘ ǎƻƳŜǘƘƛƴƎ ƛǎ ŀ bƻ{v[ǘŜŎƘƴƻƭƻƎȅ ǘŜƭƭǎ ȅƻǳ ǿƘŀǘ ƛǘΩǎ ƴƻǘτƛǘΩǎ ƴƻǘ ǊŜƭŀǘƛƻƴŀƭ. ¢Ƙƛǎ ƭŀōŜƭ ŘƻŜǎƴΩǘ ǘŜƭƭ ȅƻǳ

what the technology is, however, because quite different approaches are lumped together under this broad

umbrella. For operational data, these approaches are commonly grouped into the three categories shown in the

upper left quadrant of Figure 1: document stores, key/value stores, and column family stores. This section looks at

the managed services that Azure offers in each of these categories.

Document Store: DocumentDB
¢ƘŜ Ǌƻǿǎ ŀƴŘ ŎƻƭǳƳƴǎ ƛƴ ŀ ǊŜƭŀǘƛƻƴŀƭ ǘŀōƭŜ ǇǊƻǾƛŘŜ ǎǘǊǳŎǘǳǊŜ ŦƻǊ ŘŀǘŀΦ .ǳǘ ǿƘŀǘ ƛŦ ǘƘŀǘ ǎǘǊǳŎǘǳǊŜ ŘƻŜǎƴΩǘ ƳŀǘŎƘ ǘƘŜ

data your application is working with? For an application working with JSON data, for example, a storage

technology designed for JSON may well be a better fit. For situations like this, and plenty of others, Azure provides

DocumentDB. Figure 3 provides a simple illustration of this cloud-based document store.

Figure 3: DocumentDB, a document store, lets an application work with data as JSON documents.

 7

As the figure shows, a DocumentDB database contains a collection of JSON documents. 5ƻƴΩǘ ōŜ ŎƻƴŦǳǎŜŘΣ ǘƘƻǳƎƘΥ

¢ƘŜ ǿƻǊŘ άŘƻŎǳƳŜƴǘέ ƘŜǊŜ Ƙŀǎ ƴƻǘƘƛƴƎ ǘƻ Řƻ ǿƛǘƘΣ ǎŀȅΣ aƛŎǊƻǎƻŦǘ ²ƻǊŘ ŘƻŎǳƳŜƴǘǎΦ ! W{hb ŘƻŎǳƳŜƴǘ ƛǎ Ƨǳǎǘ ŀ

bunch of JSON text. JSON is derived from the syntax of JavaScript, which makes it easy for JavaScript developers to

use. But JSON support is available for multiple languagesτƛǘΩǎ ƴƻǘ ƻƴƭȅ ŦƻǊ WŀǾŀ{ŎǊƛǇǘΦ .ecause it provides a simple

and compact way to represent data, JSON has become a popular way to represent information for transmission

and storage.

The example in Figure 3 once again holds data about users of a web application. This data is stored quite

differently than in the relational table shown in Figure 2, however. wŀǘƘŜǊ ǘƘŀƴ ǎǘƻǊƛƴƎ ŜŀŎƘ ǳǎŜǊΩǎ Řŀǘŀ ƛƴ ŀ Ǌƻǿ ƛƴ

ǎƻƳŜ ǘŀōƭŜΣ 5ƻŎǳƳŜƴǘ5. ƛƴǎǘŜŀŘ ǎǘƻǊŜǎ ŜŀŎƘ ǳǎŜǊΩǎ Řŀǘŀ ƛƴ a separate JSON document. For example, Document 1

contains the name, country, age, and last use date for ŀ ǳǎŜǊ ƴŀƳŜŘ άWƻƘƴέ. This is the same information that a

row of the table shown in Figure 2 might contain, but unlike a relational table, DocumentDB stores everything as

text, using the conventions and data types defined by JSON.

DocumentDB differs from relational tables in other ways, too. As described earlier, relational tables have a fixed

schema, with each row containing a value for all ƻŦ ǘƘŜ ǘŀōƭŜΩǎ ŎƻƭǳƳƴǎΦ ¢Ƙƛǎ ƛǎƴΩǘ ǘrue for documents in

DocumentDB. In Figure 3, for example, Document 2 omits the lastUse element, while Document 3 replaces lastUse

with something completely different, the date that a user first began using the application. And look at Document

4τƛǘ ŘƻŜǎƴΩǘ Ŏƻƴǘŀƛƴ ƛƴŦƻǊƳŀǘƛƻƴ ŀōƻǳǘ ŀ ǳǎŜǊ ŀǘ ŀƭƭΦ LƴǎǘŜŀŘΣ ǘƘƛǎ ŘƻŎǳƳŜƴǘ Ŏƻƴǘŀƛƴǎ ŀ Ŏƻǳƴǘ ƻŦ ǘƘŜ ƴǳƳōŜǊ ƻŦ

user documents in this collection and the date the last one was added. This is all perfectly legal. As with most

NoSQL stores, DocumentDB has no fixed schema. Each document in a collection can look any way its creator wants

it to look.

To access and modify data, an application makes Ŏŀƭƭǎ ǘƻ 5ƻŎǳƳŜƴǘ5.Ωǎ w9{¢Ŧǳƭ ƛƴǘŜǊŦŀŎŜΦ !ƳƻƴƎ ƻǘƘŜǊ ǘƘƛƴƎǎΣ

these calls can submit queries against one or more documents in a collection using a SQL-based query language.

LǘΩǎ ŀƭǎƻ ǇƻǎǎƛōƭŜ ǘƻ ŎǊŜŀǘŜ ǎǘƻǊŜŘ ǇǊƻŎŜŘǳǊŜǎ and triggers that run inside DocumentDB itself. Written in JavaScript,

a stored procedure is always wrapped in an atomic transaction, so all of the changes it makes to documents in a

collection succeed or fail as a group. And to make access fast, DocumentDB creates an index for every JSON

element in every document. These are like the secondary indexes in a relational system, but tƘŜȅΩǊŜ ōǳƛƭǘ

automatically by the system.

Like most NoSQL technologies, DocumentDB is designed to support very large amounts of data, up to hundreds of

terabytes in a single database. To allow this, the collections in a DocumentDB database can be stored on different

machines within the service. While this helps with scale, it also brings some constraints. Each query can target only

one collection, for example, ŀƴŘ ǎƻ Řŀǘŀ ǘƘŀǘΩǎ ƻŦǘŜƴ ŀŎŎŜǎǎŜŘ ǘƻƎŜǘƘŜǊ ǎƘƻǳƭŘ ōŜ ƪŜǇǘ ƛƴ ǘƘŜ ǎŀƳŜ ŎƻƭƭŜŎǘƛƻƴΦ

Transactions alsƻ ŎŀƴΩǘ ǎǇŀƴ ŎƻƭƭŜŎǘƛƻƴǎΦ ²ƘƛƭŜ ƛǘΩǎ ǇƻǎǎƛōƭŜ ǘƻ Řƻ ŀǘƻƳƛŎ ǳǇŘŀǘŜǎ ƻƴ ŘƻŎǳƳŜƴǘǎ ǿƛǘƘƛƴ ŀ ŎƻƭƭŜŎǘƛƻƴΣ

ƛǘΩǎ ǳǇ ǘƻ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ǘƻ ŜƴǎǳǊŜ ŎƻǊǊŜŎǘƴŜǎǎ ŦƻǊ ǳǇŘŀǘŜǎ ŀŎǊƻǎǎ ŎƻƭƭŜŎǘƛƻƴǎΦ

¢ƻ ƳŀƪŜ ǎǳǊŜ ǘƘŀǘ ŀ ǎƛƴƎƭŜ ǎŜǊǾŜǊ ŦŀƛƭǳǊŜ ǿƻƴΩǘ ƳŀƪŜ ŀ ŎƻƭƭŜŎǘƛƻƴΩǎ ŘƻŎǳƳents unavailable, DocumentDB stores

multiple copies of each collection on different machines. But replicating data like this brings another challenge:

What happens when data is changed? If an application reading that changed data waits until all of the replicas are

ǳǇŘŀǘŜŘΣ ƛǘΩǎ ƎǳŀǊŀƴǘŜŜŘ ǘƻ ǎŜŜ ŎƻǊǊŜŎǘ ŘŀǘŀΣ ōǳǘ ǘƘŜ read will be relatively slow. If an application chooses instead

to read from any available replica without waiting for a change to propagate to all of them, the read will be fast,

but the data it returns might be wrongτǿƘŀǘ ƛŦ ǘƘƛǎ ǊŜǇƭƛŎŀ ƘŀǎƴΩǘ ōŜŜƴ ǳǇŘŀǘŜŘ ȅŜǘΚ Different applications have

 8

different requirementsτtheir creators want to trade off performance and data consistency in different waysτand

so DocumentDB provides four consistency options:

 Strong, which is the slowest of the four, but is guaranteed to always return correct data.

 Bounded staleness, which ensures that an application will see changes in the order in which they were made.

This option does allow an application to see out-of-date data, but only within a specified window, e.g., 500

milliseconds.

 Session, which ensures that an application always sees its own writes correctly, but allows access to potentially

out-of-date or out-of-order data written by other applications.

 Eventual, which provides the fastest access, but also has the highest chance of returning out-of-date data.

DocumentDB is a managed service, so ŘŜǾŜƭƻǇŜǊǎ Ŏŀƴ ŎǊŜŀǘŜ ƴŜǿ ŘŀǘŀōŀǎŜǎ ŀƴŘ ŎƻƭƭŜŎǘƛƻƴǎ ǉǳƛŎƪƭȅΦ ¢ƘŜǊŜΩǎ ƴƻ

need to install or manage servers. The service is multi-ǘŜƴŀƴǘΣ ƘƻǿŜǾŜǊΣ ǿƘƛŎƘ ƳŜŀƴǎ ǘƘŀǘ ƛǘΩǎ ǳǎŜŘ ǎƛƳǳƭǘŀƴŜƻǳǎƭȅ

by multiple applications. How can the system make sure that no single user gets more than its share of the

ǎŜǊǾƛŎŜΩǎ ǊŜǎƻǳǊŎŜǎΚ ¢ƘŜ ŀƴǎǿŜǊ ƛǎ ǘƘŀǘ ŜŀŎƘ 5ƻŎǳƳŜƴǘ5. ǳǎŜǊǎ ōǳȅǎ ŀ ǎǇŜŎƛŦƛŎ ƴǳƳōŜǊ ƻŦ /ŀǇŀŎƛǘȅ ¦ƴƛǘǎ ό/¦ǎύΦ

Each CU includes a specific amount of storage and reserved throughput, which lets dŜǾŜƭƻǇŜǊǎ ƪƴƻǿ ǘƘŀǘ ǘƘŜȅΩƭƭ

ƎŜǘ ǘƘŜ ǇŜǊŦƻǊƳŀƴŎŜ ǘƘŜȅΩre paying for.

LǘΩǎ ŦŀƛǊ ǘƻ ǎŀȅ ǘƘŀǘ ŘƻŎǳƳŜƴǘ ǎǘƻǊŜǎ ŀǊŜ ǘƘŜ Ƴƻǎǘ widely used NoSQL option today. With DocumentDB, Microsoft

aims at making it simpler and faster for developers to build applications that use this approach for their data.

NoSQL in the Azure Store

Microsoft provides a variety of NoSQL technologies as managed services on Azure. But this cloud platform also

includes the Azure Store, through which developers can purchase other managed NoSQL offerings. Among the

choices are:

 Managed MongoDB services provided by MongoLabs or the company called MongoDB.

 RavenHQ, a managed document store based on RavenDB.

 Redis Cloud, a managed key/value store based on Redis.

And ŀǎ ŀƭǿŀȅǎΣ ȅƻǳΩǊŜ ŦǊŜŜ ǘƻ ƛƴǎǘŀƭƭ ŀƴŘ Ǌǳƴ ŀƴȅ bƻ{v[ŘŀǘŀōŀǎŜ ȅƻǳ ƭƛƪŜ ƛƴ !ȊǳǊŜ ±aǎ. The reality is that

there are lots of different ways to use NoSQL technologies on Microsoft Azure.

 9

Key/Value Store: Tables
Suppose your application needs very fast access to large amounts of data. Maybe ȅƻǳΩǊŜ ŎǊŜŀǘƛƴƎ ŀƴ Ŝcommerce

website, for instance, that maintains a large number of online shopping carts. The data is relatively simple: IǘΩǎ Ƨǳǎǘ

information about the items a customer is interested in purchasing. The operations the application performs on

this data are also relatively simple: read and write using a unique key for each shopping cart.

¢Ƙƛǎ ǎŎŜƴŀǊƛƻ ŘƻŜǎƴΩǘ ƴŜŜŘ ǘhe power of a relational database. And since that power comes with a cost, using a

relational system would likely limit the number of simultaneous users your application can support. For carrying

out lots of operations on large amounts of simply structured data, a key/value store such as Azure Tables can be a

better choice. Figure 4 illustrates the basics of this technology.

Figure 4: Azure Tables, a key/value store, lets an application provide a key and get back values associated with

that key.

The basic idea of a key/value store is simple. An application gives the store a unique key, then gets back one or

more values associated with that key, as the figure shows.

In Azure Tables, data is held in tables, which are split into partitions. Each partition holds some number of entities,

and each entity contains properties. Each property has a name and a type, such as integer or character string or

date, and each one holds a value. One property in each entity is designated as the partition key, and it contains the

same value for all entities in a particular partition. A second property in each entity is designated as the row key,

ŀƴŘ ƛǘ Ŏƻƴǘŀƛƴǎ ŀ ǾŀƭǳŜ ǘƘŀǘΩǎ ǳƴƛǉǳŜ ǿƛǘƘƛƴ ƛǘǎ ǇŀǊǘƛǘƛƻƴΦ

To retrieve an entity, an application provides the partition key and the row key for that entity. What comes back is

the entity this key pair identifies, including some or all of its properties. This response can be formatted as either

XML or JSON, depending on what the client specifies. LǘΩǎ ŀƭǎƻ ǇƻǎǎƛōƭŜ ǘƻ ŀŎŎŜǎǎ ŀ ǊŀƴƎŜ ƻŦ ŜƴǘƛǘƛŜǎ ƛƴ ŀ ǎƛƴƎƭŜ

request. Azure Tables has no support for secondary indexes, howeverτaccess is via partition and row keys.

 10

Like other NoSQL technologies, Azure Tables has no notion of schema. Each entity in a partition can contain

different properties with different data types ƛŦ ǘƘŀǘΩǎ ǿƘŀǘ ƳŀƪŜǎ ǘƘŜ Ƴƻǎǘ ǎŜƴǎŜ ŦƻǊ ŀƴ ŀǇǇƭƛŎŀǘƛƻƴΦ Lƴ ǘƘŜ

example shown in Figure 4, for instance, the entity with the key A1 might hold the same information as Document

1 in Figure 3: the name of a user, her country, her age, and the date she last used the system. Entity A2 might hold

the same information as Document 2 iƴ CƛƎǳǊŜ оΥ Ƨǳǎǘ ŀ ǳǎŜǊΩǎ ƴŀƳŜΣ ŎƻǳƴǘǊȅΣ ŀƴŘ ŀƎŜΦ 9ƴǘƛǘȅ .м ƳƛƎƘǘ ƘƻƭŘ ǘƘŜ

same information as Document 3 in the earlier example, while entity B2 again holds a count of users and the date

ƻƴ ǿƘƛŎƘ ǘƘŜ ƭŀǎǘ ǳǎŜǊ ǿŀǎ ŀŘŘŜŘΦ ¢ƘŜǊŜΩǎ ƴƻ ǊŜǉǳƛǊŜŘ ǎǘǊǳŎǘǳǊŜΦ

Whatever the data looks like, Tables allows very fast access to entities. This access is relatively simple, however.

¢ƘŜǊŜΩǎ ƴƻ ǊŜŀƭ ǉǳŜǊȅ ƭŀƴƎǳŀƎŜΣ ŀƭǘƘƻǳƎƘ ǎƻƳŜ ƻǇŜǊŀǘƛƻƴǎ ŘŜŦƛƴŜŘ ōȅ h5ŀǘŀ ŀǊŜ ǎǳǇǇƻǊǘŜŘΣ ŀƴŘ ǘƘŜ ǎŜǊǾƛŎŜ Ƙŀǎ ƴƻ

support for stored procedures or triggers. A group of updates can be wrapped in an atomic transaction as long as

all of the entities involved are in the same partition of the same table.

Like DocumentDB, Azure Tables stores multiple replicas of each partition on different servers, so a single machine

ŦŀƛƭǳǊŜ ǿƻƴΩǘ ƳŀƪŜ that data unavailable. Unlike DocumentDB, however, Azure Tables always provides strong

consistency, which means that reads always return the latest data. Tables also offers the option of geo-redundant

storage, with a copy of your data stored in two different Azure datacenters. Changes are asynchronously updated

across these copies.

One more attractive aspect of Tables is their low price. While the details vary depending on the options you

chooseτgeo-redundant storage costs moreτthis NoSQL service is less expensive than DocumentDB. This is partly

ōŜŎŀǳǎŜ ȅƻǳ Ǉŀȅ ƻƴƭȅ ŦƻǊ ǎǘƻǊŀƎŜΤ ǘƘŜǊŜΩǎ ƴƻ ƎǳŀǊŀƴǘŜŜŘ /t¦ ŎŀǇŀŎƛǘȅΣ ǿƘƛŎƘ ƳŜŀƴǎ ǘƘŀǘ ŀǇǇƭƛŎŀǘƛƻƴ ǇŜǊŦƻǊƳŀƴŎŜ

might vary. Still, a key/value store is the right choice in many situations. Its simplicity, scalability, and low cost

make it a good match for quite a few applications.

Column Family Store: HBase
{ǳǇǇƻǎŜ ǘƘŜ Řŀǘŀ ȅƻǳΩǊŜ ǿƻǊƪing with fits well into traditional tablesτrows and columns are a good approachτ

ōǳǘ ƛǘΩǎ ǘƻƻ ōig to use a relational database. Suppose further that your tables are sparseτmany of the cells in each

ǘŀōƭŜ ŘƻƴΩǘ ƘŀǾŜ ŀ ǾŀƭǳŜΦ CƻǊ ǎƛǘǳŀǘƛƻƴǎ ƭƛƪŜ ǘƘƛǎΣ ȅƻǳ ƳƛƎƘǘ ōŜ ƘŀǇǇƛŜǎǘ ǿƛǘƘ ŀ ŎƻƭǳƳƴ ŦŀƳƛƭȅ ǎǘƻǊŜΦ

For example, imagine creating a table with information about every web page on the Internet. Each row could

describe a page, while each column describes some aspect ƻŦ ǘƘŀǘ ǇŀƎŜΦ ¸ƻǳΩŘ ƘŀǾŜ ƭƻǘǎ ƻŦ Ǌƻǿǎτthe web is bigτ

and because a webpage can potentially have many different aspectsΣ ȅƻǳΩŘ ŀƭǎƻ ƘŀǾŜ ƭƻǘǎ of columns. But many of

the cells in this table would be empty, because most pages will have only a subset of possible attributes.

HBase is a good fit for problems like this. Figure 5 illustrates the basics of the HBase data model.

 11

Figure 5: HBase, a column family store, provides tables whose columns are grouped into column families.

As the figure shows, HBase tables have rows and columns. The columns are grouped into column families,

however, which is different from relational tables. The column families in a table must be defined up front, so

HBase does have a little schema, but the columns in a particular column family are not. You can add new ones at

any time.

The example shown here once again stores information about the users of a web application. The column family

User has a column that holds ŀ ǳƴƛǉǳŜ ƪŜȅ ŦƻǊ ŜŀŎƘ ǊƻǿΣ ŀƭƻƴƎ ǿƛǘƘ ŎƻƭǳƳƴǎ ŦƻǊ ǘƘŜ ǳǎŜǊΩǎ ƴŀƳŜΣ ŎƻǳƴǘǊȅΣ ŀƴŘ ŀƎŜΦ

The column family Usage has columns that can store the date a user last used the application and the date he first

used it.

Notice that unlike a relational table, not all rows have a value for all columns. This relaxed view of rows is how

HBase deals with diverse data. Rather than holding documents or entities with different values of different types,

as in DocumentDB or Tables, an HBase user just adds a column for whatever types a row might be required to

store. Tables can be bigτthey can have millions of columns and billions of rowsτyet most of the cells in the table

might be empty.

HBase tables also differ from relational tables in other interesting ways. There are no data types, for instance.

Every table holds nothing but bytestrings. And each cell can contain multiple time-stamped versions of a value,

which is useful when applications might need to access older information. Also, as the figure shows, the rows in a

table are broken into regions, each of which can be stored on a different machine. This is how an HBase table

scales to hold more data than will fit on a single machine. ! ŘŜǾŜƭƻǇŜǊ ǳǎƛƴƎ I.ŀǎŜ ŘƻŜǎƴΩǘ see regions, however.

Unlike DocumentDB containers and partitions in Azure Tables, both of which must be defined by the creator of the

database, HBase automatically partitions data across machines.

I.ŀǎŜ ŘƻŜǎƴΩǘ ǇǊƻǾƛŘŜ ŀ ǉǳŜǊȅ ƭŀƴƎǳŀƎŜΦ LƴǎǘŜŀŘΣ ŀƴ ŀǇǇƭication can access the value of a particular cell by

providing three things: a column family, a column qualifier (i.e., a column name), and a row key. The request can

ŀƭǎƻ ǎǇŜŎƛŦȅ ǘƘŜ ǘƛƳŜǎǘŀƳǇ ŦƻǊ ŀ ǎǇŜŎƛŦƛŎ ǾŜǊǎƛƻƴ ƻŦ ŀ ŎŜƭƭΩǎ Řŀǘŀ ƛŦ ŘŜǎƛǊŜŘΦ !ƴŘ because the rows are sorted by their

 12

keys, ǘƘŜǊŜΩǎ no need for the client to know which region contains a particular row; HBase can figure this out by

itself. This approach is similar to a key/value store, and it provides fast access. Like Azure Tables, however, HBase

doŜǎƴΩǘ ǎǳǇǇƻǊǘ ǎŜŎƻƴŘŀǊȅ ƛƴŘŜȄŜǎ; an application needs to know how to reference the data it needs. HBase also

supports creating stored procedures in Java with an option called coprocessors.

For updates, HBase provides transactions, but only for changes to cells in the same row of a single table. And like

most NoSQL technologies, HBase replicates data, storing the same information on multiple servers to provide fault

tolerance. This once again raises the question of consistency, which HBase answers in a straightforward way: It

always provides strong consistency.

I.ŀǎŜ ƛǎ ǇŀǊǘ ƻŦ ǘƘŜ IŀŘƻƻǇ ŦŀƳƛƭȅ ƻŦ ǘŜŎƘƴƻƭƻƎƛŜǎΣ ŀƴŘ ƻƴ !ȊǳǊŜΣ ƛǘΩǎ ǇǊƻǾƛŘŜŘ ŀǎ ǇŀǊǘ ƻŦ ǘƘŜ I5LƴǎƛƎƘǘ ǎŜǊǾƛŎŜΦ

Rather than being offered as a fully managed service, like DocumentDB or Tables, HBase requires a user to specify

how many instances (i.e., virtual machines) he wants for his HBase cluster. HDInsight then automatically creates

and manages this cluster. HBase data is stored in Azure Blobs, and so pricing for this service has two parts: a per-

hour charge for each instance in the HBase cluster, along with a per-gigabyte per-month charge for the data stored

in Blobs.

Like other NoSQL technologies, HBase can be just the right choice for an application. But keeping all of the options

straight can be challengingτǘƘŜǊŜΩǎ ƭƻǘǎ ǘƻ ǊŜƳŜƳōŜǊΦ ¢ƻ ƘŜƭǇ you do this, Figure 6 summarizes some of the key

aspects of the four managed services that Azure provides for operational data today: SQL Database, DocumentDB,

Tables, and HBase.

Figure 6: Azure provides a range of relational and NoSQL managed services for operational data.

